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Germany 
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Abstract. The Glauber dynamics of the Little-Hopfield model and the asymmetric SK 
model is studied with the help of path integrals introduced recently by Sommers. This 
dynamical approach confirms the results of Amit et al. For the fully asymmetric SK model 
one can calculate the response and autocorrelation functions exactly and observe exponen- 
tial decay for both functions. The effect of weak correlations between the couplings J ,  
and Jji  is investigated. 

The connection of neural network models of the Little-Hopfield type [ 11 and Sherring- 
ton-Kirkpatrick spin glasses has been an active research field [2]. Recently, Sommers 
[3] introduced a path integral approach to Ising spin glasses. This letter tries to apply 
the Sommers method to the Little-Hopfield model and to find out if the results agree 
with those derived earlier [4] by the replica trick. Moreover, we discuss the implications 
for a model intermediate between symmetric and fully asymmetric synaptic couplings, 
similar to that of Hertz et al [5]. 

The advantage of a dynamical approach to the Little-Hopfield model is that it is 
possible to avoid the unphysical replica trick n + 0 which is necessary in the static 
approach to perform the quenched average over the p = a N  random patterns { ~ " } y ' ' ~ - ~ p .  

We will examine the relationship between time-persistent quantities and static order 
parameters introduced by Amit et a1 [4]. We write the spin distribution as a functional 
integral [3] and perform the quenched average over the p - s non-condensed patterns 
[4] which leads to the introduction of the averaged spin autocorrelation function 

the response function 

the random-overlap correlation function 
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a p = s + 1  
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3[i&, b ]  
6 

G( t ,  - t 2 )  =- - 
Si&( t , )  ah(  t z )  

and a function S ( t , ,  t 2 )  related to R ( t , ,  t 2 )  in the same way as G(tl,  t 2 )  to C ( t , ,  t 2 )  
which is described below. 

B=O 

is the random overlap of the network with one of the p - s non-condensed patterns at 
time t. The bar means the average over the quenched disorder. Following Sommers 
[3] we choose homogeneous initial conditions for the spin distribution, let the initial 
time go to -a and arrive at the generating functional for the spin correlation and 
response functions [61: 

s s 
Z[i&, b ]  = ([ exp( f I dTI d~~ d (  7, - T ~ )  - - 

Sh(71) S h ( 7 2 )  

S 
dr ,  d r2  S( T~ - T ~ )  - ~ 

71 > 7 2  

where ((. . .)) means the average with respect to the s condensed patterns [ I , .  . . , [' and 
with respect to the Gaussian variable z with zero mean and variance one. d (  t )  and r 
are the short-time and time-persistent parts of R ( t )  respectively, which are defined 
below. m ( t )  obeys the integral equation 

m ( t )  = d7 e-r' '-r) [r tanh @ h ( r ) + G ( r ) ( l  - m * ( ~ ) ) ]  ( 5 )  I:, 
and the other quantities have to be determined self-consistently in a way described 
below (r is the spin-flip rate, @ the inverse temperature and b a homogeneous external 
field). The self-consistence equations are given by 

and the relation between these functions and the Fourier transforms of the functions 
d (  t )  and S (  t )  in the exponent of the RHS of equation (4) is determined from the saddle 
point equations 

1 
1 - G ( w )  

S ( w )  = 

where we have defined the time-persistent part of R ( t ) :  r=lim,,,R(t), and the 
short-time part of R (  t ) :  d (  t )  = R(  1 )  - r. It follows 

4 
(1 - G ( w  = 0 ) ) 2  

r =  
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where q=lim,,,C(t) is the EA order parameter. One can prove_the existence of a 
fluctuation-dissipation theorem (FDT) between the short-time part C( t )  of the correla- 
tion function, i.e. c(t) = C ( t ) - q ,  and the response function G ( t )  [3]. Then from 
equation (7) follows an FDT between the short-time part k (  t )  of R (  t )  and the random- 
overlap response S (  t ) :  

(9) 

This enables us to extract the static properties in the same way as in the SK model [3]. 
We get the same equations for the order parameters q, r and m y  ( Y = 1, . . . , s) as Amit 
et al [4] within their replica symmetric solutions. It is important to observe that the 
local field h ( t )  consists of four parts: an external field b(t)  = b, a field E:,=, mu( ?)tu 
caused by the s macroscopic overlaps of the network with the learned patterns, a 
fluctuating part Ja@( t )  with Gaussian correlations (@( t ) )  = 0 and (@( t ) @ (  t ’ ) )  = 
R (  t - t ‘ )  and not-as in the SK model-with (@( t ) @ (  t ’ ) )  = C (  t - t ’ ) ,  and a response 
part jT , ,T ,aS(~l  - T ~ ) ( T (  T ~ ) ,  where the random-overlap response functions S (  t - t‘)-not 
the response function G( t - t ’ )  as in the SK model-couples the neuron’s value at time 
t to its values at former times t ’ <  r. That is the reason why the situation in the 
Little-Hopfield model is a little more complicated than in the SK model. The first-order 
perturbation theory approximation for the low-frequency behaviour of the response 
function diverges for w # 0 near the generalised Almeida-Thouless line found by Amit 
et al [4]. We conclude that the above solution of the saddle-point equations in the 
static limit corresponds to the replica symmetric solution, which becomes unstable 
below the generalised AT line. This situation is quite similar to that of the SK model 
of spin glasses treated by Sommers [3]. 

In a further investigation we have studied the Glauber dynamics of the asymmetric 
SK model [5]. In this neural network model pairs of synaptic couplings (.Iij, Ai )  are 
independent and randomly distributed according to a bivariate Gaussian distribution 
with 

2 
d ( w )  =- Im ~ ( w ) .  

Po 

(Jjj) = (Ai) = 0 

(J? . )  ‘J = (J?.)  J’ = J 2  (10) 

(JiAi) = J’A. 

The correlation parameter varies between -1 and + 1. The case A = 1 is the conventional 
Sherrington-Kirkpatrick model for spin glasses; the case A = 0 represents the fully 
asymmetric SK model. The generating functional is now given by [6]: 

(11) 
where m ( t )  is given by equation ( 5 )  and the averaged spin autocorrelation function 
must be determined self-consistently from equation (6). The case A = 0 can be solved 
exactly. This yields for the response function 

4) 

G( t - t ’ )  = e ( l -  tr)r /3 ~osh-~[’(b+Jz)] (12) 
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which is the same expression as found by Kree and Zippelius [7] for a model of 
asymmetric diluted neural networks in the limit of strong dilution. For temperature 
T = 0 ( p  + 00) and external field b = 0 the spin autocorrelation function C( t )  is given 
in the following implicit form (time t as a function of C): 

A numerical integration yields a minimal deviation of C (  t )  from an exponential decay: 

c ( r ) -exp(  - r [ ( ~ - 2 ) / ~ ] r ) .  (14) 

This seems to contradict the result of Bausch er al [SI, who find for the same model 
but within the Langevin approach a non-equilibrium freezing transition with non- 
vanishing EA order parameter q=lim,,,C(t) in the absence of thermal noise. 
However, their result is due to the fact that in their treatment not only the temperature 
goes to zero, but also the spin flip rate r. In this trivial case there is no dynamics at 
all; equation (1 1) also predicts C( t )  = C( t = 0) = 1. 

If we assume the external local fields bi-corresponding to the threshold value of 
the ith neuron-to be distributed independently according to a Gaussian distribution 
with zero mean arid variance B, which is more realistic for brain models than a vanishing 
external field, then we get a non-vanishing EA order parameter. With p = B 2 /  J 2 ,  we 
get q ( p )  = [ 2 / ( ~ - 2 ) ] p  + O ( p z )  for p<< 1 and q +  1 for p +CO. The relaxation time 
for the autocorrelation function becomes smaller for p # 0 and r-’ for p -$ CO. 

We have studied the effect of weak correlations ( / A I < <  1 )  between the synaptic 
couplings (Jz,, J1) by expanding the response function G and the autocorrelation 
function C around the saddle point CO, Go at A = O  and neglecting terms of higher 
order than first in A. Within this approximation we find for the effective relaxation 
time of the response function: 

If A s 0 the relaxation time is always finite, whereas for A > 0 it is finite only as long 
as q is small enough. So we have investigated the long-time limit q of the autocorrelation 
function for A # 0. We find a lower limit for A below which the solution q = 0 is stable. 
This limit is A,: =ir( T - 2) = 0.448. For A 2 A, the EA order parameter as a function 
of A is continuous, but the derivative has ajump at A, from zero to a non-vanishing value. 

Summarising our results on the asymmetric SK model we have found for the fully 
asymmetric SK model that there exists no spin glass phase with diverging relaxation 
times or non-vanishing EA order parameter in zero field, not even in the deterministic 
case ( T = 0). Hertz er a1 [5] suggested the non-existence of diverging relaxation times 
in the asymmetric SK model, but their argument is not rigorous, as they point out, 
except in the limit m + w  (where m is the number of spin components). Within 
first-order perturbation theory in the correlation parameter A we were able to determine 
at T=O the relaxation time of the response function and the EA order parameter, 
which vanishes for small A. The relaxation time is finite for A small enough, which 
means that the asymmetry in the synaptic couplings is strong enough. Although we 
were not able to calculate the relaxation time of the autocorrelation function, it seems 
to us that there is no spin glass transition in the asymmetric SK model, at least with a 
strong asymmetry. 
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After completion of this work, we became aware of the recent work of Crisanti 
and Sompolinsky [9], who studied the Langevin dynamics of asymmetric networks 
and found the absence of a spin glass phase in general networks with Gaussian 
asymmetry. 

One of the authors (HR) would like to thank H J Sommers for helpful discussions. 
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